KAHAЛЬНЫЕ ERP 3D DC-INVERTER

Средненапорные канальные блоки развивают статическое давление до 160 Па. Благодаря этому можно использовать протяженные воздуховоды при монтаже такой системы и создавать наиболее оптимальные условия в обслуживаемом помещении.

Проводной ПДУ со встроенным Wi-Fi-модулем, встроенная дренажная помпа и воздушный фильтр в стандартной комплектации позволяют сэкономить при покупке и монтаже канальных блоков.

УПРАВЛЕНИЕ

Проводной пульт дистанционного управления KJR-150A

в комплекте

ОПЦИИ:

Проводной пульт дистанционного управления KJR-12B

Проводной пульт дистанционного управления KJR-150B

Проводной пульт дистанционного управления KJR-120A

Проводной пульт дистанционного управления KJR-29B1

Беспроводной пульт дистанционного управления RG10, с держателем

ВНУТРЕННИЕ БЛОКИ

MDT2I-12HWFN8 MDT2I-18HWFN8 MDT2I-24HWFN8 MDT2I-36HWFN8 MDT2I-48HWFN8 MDT2I-60HWFN8

НАРУЖНЫЕ БЛОКИ

MDOU-12HFN8 MDOU-18HFN8 MDOUN-24HFN8 MDOU-36HFN8 MDOUN-48HFN8 MDOUN-60HFN8

ХЛАДАГЕНТ

R32

ПОДРОБНЕЕ О СЕРИИ

Проводной пульт KJR-150A

Канальные сплит-системы поставляются со стильным пультом со встроенным Wi-Fi-модулем.. Кондиционером можно управлять удаленно через приложение со смартфона или планшета, дополнительные опции для этого не нужны. Также пульт KJR-150A позволяет настроить недельный таймер и поддерживает функцию Follow me.

Универсальный монтаж

Канальные блоки от 18 до 60 kBTU/h можно монтировать как в горизонтальном, так и вертикальном положении. Блоки оснащены универсальным поддоном для сбора конденсата. Встроенная помпа установлена в положении для горизонтального монтажа, при выборе вертикальной установки, положение помпы легко изменить, повернув ее на 90° непосредственно на объекте.

Здоровье и комфорт

- Противопылевой фильтр
- Самоочистка внутреннего блока
- Режим комфортного сна
- Теплый пуск
- Таймер

Функциональность

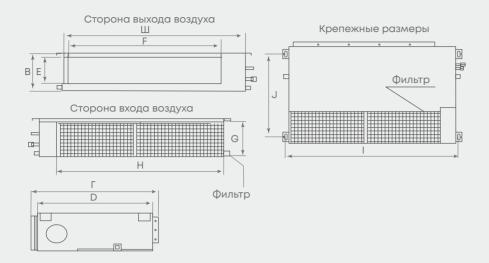
- Режим ЕСО
- Режим Turbo
- Температурная компенсация
- Встроенная дренажная помпа, отвод конденсата на высоту до 1000 мм
- Функция Follow me
- Функция GEAR
- Дежурный обогрев 8 °C
- ИК-пульт с держателем (опция)
- Проводной пульт (с Wi-Fi-модулем)
- Wi-Fi-управление
- Диспетчеризация и центральное управление
- Клеммы удаленного включения-отключения
- Клеммы вывода сигнала об аварии
- Автоматический перезапуск
- Подмес свежего воздуха
- Универсальное подключение воздуховодов
- Автоматическая оттайка
- Кнопка включения без пульта
- Возможность вертикального монтажа модели 12 kBTU/h (под заказ)
- Вертикальный и горизонтальный монтаж (18-60kBTU/h)

Эффективность

- 3D DC-Inverter ERP
- Хладагент R32
- Широкий температурный диапазон
- Низкотемпературный комплект (опция)

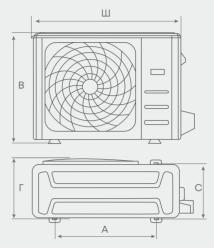
Надежность

- Компрессоры GMCC
- Обнаружение утечки хладагента
- Функция самодиагностики
- Защита от резких перепадов напряжения
- Работа в условиях нестабильных электрических сетей
- Golden Fin
- Защитная крышка вентилей наружного блока


КАНАЛЬНЫЕ СПЛИТ-СИСТЕМЫ ERP 3D DC-INVERTER

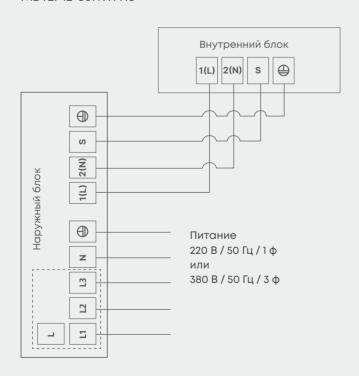
Модель			MDT2I- 12HWFN8	MDT2I- 18HWFN8	MDT2I- 24HWFN8	MDT2I- 36HWFN8	MDT2I- 48HWFN8	MDT2I- 60HWFN8		
Наружный бло	ок		MDOU- 12HFN8	MDOU- 18HFN8	MDOUN- 24HFN8	MDOU- 36HFN8	MDOUN- 48HFN8	MDOUN- 60HFN8		
Номинальная холодопроизводительность		кВт	3.52 (0.53-3.91)	5.28 (1.32-6.15)	7.03 (8.16–7.91)	10.55 (2.73–11.72)	14.07 (3.52–15.83)	16.12 (4.10-17.29)		
Номинальная те	еплопроизводительность	кВт	3.81 (0.99-4.47)	6.01 (1.49-6.30)	7.62 (2.78-8.56)	11.72 (2.78–12.84)	16.12 (4.10–17.58)	18.17 (4.40–20.52)		
Электропитани	е	В/Гц/ф	220-240/50/1	220-240/50/1	220-240/50/1	380-415/50/3	380-415/50/3	380-415/50/3		
	Номинальная потребляемая мощность	кВт	1.10 (0.16–1.47)	1.59 (0.36–2.13)	2.19 (0.75–2.86)	3.51 (0.89–4.20)	4.38 (0.810-6.45)	5.02 (1.03-6.65)		
Охлаждение	Номинальный потребляемый ток	А	4.77 (1.30-6.47)	7.10 (1.60–9.40)	10.2 (4.2–12.6)	6.00 (1.40-6.70)	7.00 (1.80–10.5)	8.10 (3.10–11.5)		
	SEER / класс энергоэффективности		6.5 / A++	6.5 / A++	6.5 / A++	6.1 / A++	5.8 / A+	6.1 / A++		
	Номинальная потребляемая мощность	кВт	1.12 (0.30–1.42)	1.62 (0.50–1.85)	2.0 (0.64–2.50)	3.25 (0.78–4.00)	4.47 (0.95–5.80)	5.03 (0.95–6.60)		
Нагрев	Номинальный потребляемый ток	А	5.69 (1.48–6.29)	7.20 (2.20–8.10)	9.0 (3.80–11.00)	5.30 (1.30-6.40)	8.00 (2.00–9.00)	8.0 (2.00–11.50)		
	SCOP / класс энергоэффективности		4.1 / A+	4.1 / A+	4.2 / A+	4.0 / A+	4.0 / A+	4.0 / A+		
Максимальная	потребляемая мощность	кВт	1.85	2.95	3.70	5.00	7.30	7.50		
Максимальный	потребляемый ток	А	9.0	13.5	19.0	10.0	14.0	14.0		
Подключение эл	пектропитания				к наружн	ому блоку				
Кабель питания		MM^2	3×1.5	3×2.5	3×2.5	5×4.0	5×4.0	5×4.0		
Межблочный ка	бель	MM ²	4×1.5	4×1.5	4×1.5	4×1.5	4×1.5	4×1.5		
Расход воздуха внутреннего блока		M ³ /4	660/570/470	900/780/650	1200/1000/700	1700/1400/1100	2000/1700/1300	2200/1900/1500		
Уровень шума внутреннего блока		дБ(А)	35/33/31/26	36.5/34/31/25	33.5/32.5/31/27.5	39/37/34	43.5/41.5/39.5/36	44.5/43/41.5		
Статическое давление ESP (номинал)		Па	25	25	25	37	50	50		
Статическое давление ESP (диапазон)		Па	0-100	0-160	0-160	0-160	0-160	0-160		
Расход воздуха наружного блока		M ³ /4	2200	2100	3500	4000	5600	5600		
Уровень шума наружного блока		дБ(А)	55.5	59	60	65	64.5	64		
Высота подъема встроенной дренажной помпой		MM	1000	1000	1000	1000	1000	1000		
Диаметр дренажной трубки		MM	25	25	25	25	25	25		
Тип компрессор	oa				ротаці	ионный				
Бренд компрес	copa		GMCC							
Макс. длина тру макс. перепад в		М	25 / 10	30 / 20	50 / 25	75 / 30	75 / 30	75 / 30		
Макс. длина трубопровода при перепаде высот		М	40 / 3	50/3	60 / 3	-	-	100 / 3		
	Тип		R32	R32	R32	R32	R32	R32		
Хладагент	Заводская заправка	КГ	0.71	1.15	1.40	2.40	2.90	3.20		
Дозаправка (при длине трубо	опровода более 5 м)	г/м	12	12	24	24	24	24		
D	Жидкостная труба	мм (дюйм)	6.35 (1/4)	6.35 (1/4)	9.52 (3/8)	9.52 (3/8)	9.52 (3/8)	9.52 (3/8)		
Диаметр труб	Газовая труба	мм (дюйм)	9.52 (3/8)	12.7 (1/2)	15.9 (5/8)	15.9 (5/8)	15.9 (5/8)	15.9 (5/8)		
Рабочий диапазон	Охлаждение	°C	-15 (-27*)~50	-15 (-27*)~50	-15 (-27*)~50	-15 (-27*)~50	-15 (-27*)~50	-15 (-27*)~50		
наружных температур	Нагрев	°C	-20~24	-20~24	-20~24	-20~24	-20~24	-20~24		
Габариты	Внутренний блок	MM	700×200×506	700×245×750	1000×245×750	1000×245×750	1200×245×750	1200×300×750		
блока (Ш×В×Г)	Наружный блок	MM	765×555×303	805×554×330	890×673×342	946×810×410	980×975×375	980×975×375		
Габариты	Внутренний блок	MM	860×285×540	925×298×850	1225×304×860	1425×304×860	1425×304×860	1425×359×860		
упаковки (Ш×В×Г)	Наружный блок	MM	887×610×337	915×615×370	995×740×398	1090×885×500	1145×1080×500	1145×1080×500		
	Внутренний блок	КГ	16.6	24.4	31.8	38.4	40.4	42.9		
Вес нетто	Наружный блок	КГ	26.6	32.5	41.9	75.5	90	92		
	Внутренний блок	КГ	19.8	29	37.2	44.4	46.8	49.1		
Вес брутто	Наружный блок	КГ	29	35.2	45.2	80	105	107		

^{*} Эксплуатация в режиме охлаждения до -27 °C доступна с установленным зимним комплектом (опция). Для обеспечения бесперебойной работы оборудования при температуре наружного воздуха ниже 0 °C необходимо оставлять зимний комплект подключенным к электропитанию.


ГАБАРИТЫ

MDT2I-12-60HWFN8

Модель		Ш	В	Γ	D	Е	f	Н	G	I	J
MDT2I-12HWFN8	MM	700	200	506	450	152	537	599	186	741	360
MDT2I-18HWFN8	MM	700	245	750	795	178	527	592	212	740	640
MDT2I-24HWFN8	MM	1000	245	750	795	178	827	892	212	1040	640
MDT2I-36HWFN8	MM	1200	245	750	795	178	1027	1092	212	1240	640
MDT2I-48HWFN8	MM	1200	245	750	795	178	1027	1092	212	1240	640
MDT2I-60HWFN8	MM	1200	300	750	795	233	1027	1092	267	1240	640


MDOU-12-60HFN8

Модель		Ш	В	Γ	Α	С
MDOU-12HFN8	MM	765	555	303	452	286
MDOU-18HFN8	MM	805	554	330	511	317
MDOUN-24HFN8	MM	890	673	342	663	354
MDOU-36HFN8	MM	946	810	410	673	403
MDOUN-48HFN8	MM	980	975	375	615	397
MDOUN-60HFN8	MM	980	975	375	615	397

ЭЛЕКТРИЧЕСКИЕ СОЕДИНЕНИЯ

MDT2I-12-60HWFN8

Модель		MDT2I- 12HWFN8	MDT2I- 18HWFN8	MDT2I- 24HWFN8
Кабель электропитания	MM^2	3×1.5	3×2.5	3×2.5
Межблочный кабель	MM^2	4×1.5	4×1.5	4×1.5

Модель		MDT2I- 36HWFN8	MDT2I- 48HWFN8	MDT2I- 60HWFN8
Кабель электропитания	MM^2	5×4.0	5×4.0	5×4.0
Межблочный кабель	MM^2	4×1.5	4×1.5	4×1.5